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We consider the effects of subjecting a polymer solution to a simultaneous oscillatory shear flow and
temperature jump into the two-phase region of the phase diagram. We predict that if the oscillatory shear
stresses are significant enough then the flow suppresses phase separation in the flow direction, leading to the
possibility of creating strongly aligned structures. We construct a quantitative dynamic phase diagram in the
amplitude-frequency plane showing the conditions for the growth or decay of concentration fluctuations.
Further, we discuss the time dependence of periodic structure factors in the flow-vorticity and flow-gradient
planes. It is also shown that significantly enhanced scattering occurs at large scattering vectors regardless of
whether the unbounded growth of fluctuations at smaller scattering vectors is suppressed.
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I. INTRODUCTION

The effects of shear flow on polymeric systems have at-
tracted considerable interest. This is partly due to its rel-
evance to industrial polymer processing and partly due to
such systems providing an ideal test of modern ideas in non-
equilibrium statistical mechanics. A quantitative approach to
characterizing the coupling between shear and structure in-
volves the study of the response of the concentration fluctua-
tions. Such fluctuations are quantifiable experimentally and
may be determined theoretically. Concentration fluctuations
are measured using scattering techniques, and a rich variety
of behavior has been observed, such as shear-induced mixing
and demixingf1–3g, and enhanced scattering at finite wave
vectorsf4g. Anisotropic enhancement and/or growth of con-
centration fluctuations in polymer solutions is known to be
induced by flows such as simple shearf5–11g.

Much of the focus has been on the effects of steady state
flows on polymer solutions, with the major theoretical ad-
vances, with regards to predicting structure factors being due
to Milner f12g and Helfand and Fredricksonf13g. Recently,
Saito and Hashimotof14g studied a solution of ultrahigh mo-
lecular weight polystyrene in dioctyl phthalatesDOPd sub-
jected to oscillatory shear flows using small-angle light scat-
tering. They found that for large enough amplitudes of shear,
the solution displayed features very similar to that of phase
separation: “butterfly patterns” in the flow-vorticity plane
were observed. Malevanets and Yeomansf15g have pre-
sented a lattice-Boltzmann scheme to numerically model bi-
nary systems with a viscosity difference between compo-
nents, subjected to oscillatory shear flow. They observed the
formation of persistent structures in the flow-shear gradient
plane. Their observations of such structures are clearly in
qualitative agreement with the experiments of Ref.f14g;
however, direct comparison is not possible since the experi-

ments and numerical calculations were carried out in differ-
ent planes with respect to the flow direction. We recently
developed a theoryf16g to predict the structure factor arising
from small concentration fluctuations in the presence of an
oscillatory shear field. This simple model was used to calcu-
late scattering in the flow-vorticity plane, and we showed
that it may explain the underlying features observed in Ref.
f14g. The model builds upon the approach of Doi and Onuki
f17g, who considered the effects of spatial stress gradients on
the relaxation dynamics of concentration fluctuations. Such
stress gradients arise naturally when fluctuations in concen-
tration occur, since the stress in a polymer solution is
strongly dependent on the concentration. It was shown, by
using the principle of force balance, that the stress enters the
equation of motion at the same level as the chemical poten-
tial. In Ref. f17g it was assumed that the response of indi-
vidual polymers to shear flow could be described by a single
relaxation time. The model has been modified to account for
the rheological response of a binary blend in which each
component has distinctly different relaxation timesf18–20g.
This approach gives rise to an explicit concentration depen-
dence of the components of the stress tensor, which has im-
portant consequences even for a system in which the stress
relaxation can be described by one dominant timescale.

In this paper, we extend the theory to consider the effects
of subjecting a polymer solution to a simultaneous oscilla-
tory shear flow and temperature jump into the two-phase
region of the phase diagram. In Sec. II, we summarize the
relevant results from our previous paper and present a sim-
pler expression for calculating the structure factor, even
within the one-phase region of the phase diagram. This de-
velopment leads to a new prediction, which is discussed in
Sec. III. We show that if the oscillatory shear stresses are
significant enough then the flow suppresses phase separation
in the flow direction. We derive an exact condition for the
suppression of fluctuations and calculate the critical wave
vectors below which fluctuations grow in both the flow-
vorticity and the flow-shear gradient planes. We emphasize
that the conditions are determined in terms of independently*Electronic address: nigel.clarke@durham.ac.uk
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accessible properties of any given polymer solution and the
control parameters of the applied oscillatory shear field.
Thus, the quantitative predictions of this paper are amenable
to experimental verification. Finally, in Sec. IV, we show
growth rates and periodic structure factors for a range of
conditions.

II. THEORY

We start by briefly reviewing the important ideas and
theory covered in more detail in our previous paperf16g. The
strain in oscillatory shear flow is described bygstd
=g0sinsvtd, so that the velocity profile is

vx = g0v cossvtdy, vy = 0, vz = 0,

wherex denotes the flow direction,y denotes the shear gra-
dient direction,z denotes the vorticity direction,g0 is the
maximum amplitude of the flow, andv is the frequency. For
a polymer solution, the important thermodynamic parameters
are the difference betweenx, the Flory-Huggins interaction
parameter, andxS, its value on the quiescent spinodal, andk,
the interfacial energy. The important kinetic parameters are
the collective mobilityM, and a relaxation timetL of the
polymer that, in terms of the tube model, is related to the
idealized Doi-Edwards relaxation timetL

sDEd for the polymer
in a matrix of fixed obstacles bytL=s1/2dtL

sDEd. Within our
model two further parameters are required, the polymer vol-
ume fractionfL andGL, the plateau modulus of the polymer.
We assume incompressibility, such thatfL+fS=1, wherefS
is the volume fraction of the solvent.

Our starting point isf16g an equation of motion for fluc-
tuations in the composition,

]dfLsq,td
]t

= usq,td + g0v cossvtdqx
]dfLsq,td

]qy

− MF2q2sxS− x + kq2d

−
qiqj

kBTkfLl
dsi j

snd

dfL
GdfLsq,td, s1d

wheredfLsq ,td is the deviation from the volume fraction in
Fourier transform space,q=sqx,qy,qzdT, and si j

snd are the
components of the stress tensor due to the deformation of the
polymer network. The effects of thermal fluctuations are rep-
resented byu=usq ,td, which we assume to be Gaussian
white noise and to satisfy the fluctuation-dissipation theo-
rem,

kusq,tdl = 0,

kusq,tdusq,t8dl = 2Mq2dst − t8d.

From Eq.s1d, we obtained, using the method characteristics,
an equation of motion for the structure factorSsq ,td
=kudfLsq ,tdu2l, in terms of reduced variablesḠL

=GL /kBT, q̄2=q2MtL , t̄= t /tL , v̄=vtL, andk̄=k /MtL,

dS

dt̄
=H− 4q̄2sxS− x + k̄q̄2d +

8q̄xq̄yḠLg0

1 + v̄2 fv̄2 sinsv̄t̄d

+ v̄ cossv̄t̄dgJS+ 2q̄2. s2d

This equation was obtained on the basis of the linear vis-
coelastic model for the network stress,

ssnd =E
−`

t

Gst − t8dH2est8d −
2

3
ftr est8dgIJdt8, s3d

whereGstd is the stress relaxation function discussed in Ref.
f16g, e is the rate-of-strain tensor whose components are de-
fined in terms of velocity gradients aseij =1/2s= jvLi

+=ivLjd, and I is the identity tensor. No effect of normal
stresses has been considered and, therefore, spatial variations
of the flow field are not importantf12g. Hence, the dynamics
are only governed by coupling between the fluctuations in
polymer concentration and in the network stress.

In an oscillatory shear flow, the stress tensor Eq.s3d has
only two equal componentssxy

snd=syx
snd, which represent shear

stresses. In the adiabatic approximation, Eq.s3d, coupled
with the double reptation model for the stress relaxation
function f21,22g, leadsf16g to an explicit relation between
the shear stress and the concentration,

sxy
snd =

fL
2GLg0

1 + v2tL
2 fv2tL

2 sinvt + vtL cosvtg, s4d

which allows us to deduce the fluctuations in the stress
straightforwardly. In fact, their contribution can be readily
identified in Eq.s2d.

The consequence of the oscillatory convection term in Eq.
s2d is that the component of the wave vector in the shear
gradient direction is not constant, and is described byq̄y

= q̄y0−g0q̄x sinsv̄t̄d, whereq̄y0 is fixed and chosen such that
q̄y has some desired value at a given timet̄= t̄1. This expres-
sion is substituted into Eq.s2d, which may then be solved for
given q̄0=sq̄x,q̄y0,q̄zdT; the solution yields the structure fac-
tor for q̄=sq̄x,q̄y,q̄zdT, where the value ofq̄y depends on the
temporal phasev̄t̄1. For example, if it is the shear flow-
vorticity plane which is of interest, i.e.,q̄y=0, then the struc-
ture factor at each time betweenv̄t̄1 and v̄t̄1+2p requires a
solution to Eq. s2d with a different value of q̄y0

= ḡ0q̄x sinsvt̄1d ranging from −g0q̄x to g0q̄x.
From Eq.s2d, which is a first-order nonhomogeneous lin-

ear differential equation, we can write the time dependence
of the structure factor as

Ssq̄, t̄d = S0sq̄0dexphFsq̄0,0d − Fsq̄0, t̄dj

+ exph− Fsq̄0, t̄djE
0

t̄

2q̄2st8dexphFsq̄0,t8djdt8. s5d

The exponent of the integrating factor can be written explic-
itly as
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Fsq̄0, t̄d = A0t̄ −
A1

v̄
coshv̄t̄j +

B1

v̄
sinhv̄t̄j −

A2

2v̄
cosh2v̄t̄j

+
B2

2v̄
sinh2v̄t̄j −

A3

3v̄
cosh3v̄t̄j +

B4

4v̄
cosh4v̄t̄j.

s6d

The prefactors of the oscillatory terms in the solution, which
depend on the conditions andq̄0=sq̄x,q̄y0,q̄zdT, are defined in
the Appendix. The prefactor of the term linear in time is
given by,

A0sq̄0d = 4q̄0
2sxS− x + k̄q̄0

2d + 2g0
2q̄x

2sxS− xd + 4k̄Fg0
2q̄x

2Sq̄0
2

+ 2q̄y0
2 +

3g0
2q̄x

2

8
DG +

4q̄x
2ḠLg0

2v̄2

1 + v̄
, s7d

where q̄0
2= q̄x

2+ q̄y0
2 + q̄z

2. In our previous work we solved Eq.
s5d numerically with an initial conditionS0sq̄0d, determined
by the behavior of concentration fluctuations in the absence
of shear. Unsurprisingly, we found that the solution became
periodic after sufficient cycles. We can gain further insight
into the behavior by noting that if a periodic solution for the
structure factor exists then we must have the condition that
Ssq̄ , t̄+2p / v̄d=Ssq̄ , t̄d. Hence, from Eq.s5d,

Ssq̄, t̄d =
exph− Fsq̄0, t̄ + 2p/v̄dj

1 − exps− 2pA0/v̄d

3 E
t̄

t̄+2p/v̄

2q̄2st8dexphFsq̄0,t8djdt8. s8d

Furthermore, the patterns in the flow-vorticity planesq̄y=0d
are actuallyp periodic in the temporal phasev̄t̄ because
structure factors with the same initial valuesS0sq̄0d have
been convected toq̄y=0 from q̄y0=g0q̄x sinsvt̄1d and from
−q̄y0=g0q̄x sinsvt̄1+pd. Therefore, for that plane the terms
with 2p / v̄ in Eq. s8d could be substituted simply withp / v̄.
Note that the initial conditionS0sq̄0d is, in effect, hidden in
the terms withA0. In addition to being computationally less
demanding than Eq.s5d, since it is only necessary to inte-
grate over one cycle of oscillatory shear, inspection of Eq.
s8d leads to an unusual consequence, which we will focus our
attention on in the following section.

III. SUPPRESSION OF PHASE SEPARATION
IN THE FLOW DIRECTION

Clearly a physically meaningful solution to Eq.s8d, i.e., a
positive periodic structure factor, can only exist if the de-
nominator is positive, or equivalently, ifA0.0. From Eq.
s7d, it can be seen that this will always be the case in the one
phase region, i.e., whensxS−xd.0. If A0,0 then the as-
sumption that a periodic solution exists must be incorrect,
which corresponds to the only other physically meaningful
possibility that the structure factor grows without bound.
This situation simply corresponds to the early stages of phase
separation. Hence, as expected shear stresses in oscillatory

shear are not able to induce phase separation. On the other
hand, if we now consider what happens inside the quiescent
two-phase region, i.e.,sxS−xd,0, then we see that the con-
dition A0,0 when a shear is applied does not coincide with
the quiescent condition for phase separation. In the latter
case the nature of the early stages of phase separation, based
on Cahn-Hilliard theoryf23g, is well established. In the one-
phase region of the phase diagram, fluctuations decay expo-
nentially,dfLsq̄ , t̄d~exph−Rsq̄dt̄j, with a rate dependent onq̄
according to

Rsq̄d = 2q̄2sxS− x + k̄q̄2d. s9d

Above the critical condition defined by limq→0Rsq̄d=0, the
rate becomes negative forq̄c

2, sx−xSd / k̄ and such fluctua-
tions are unstable and grow. There is a fastest growing wave
vector q̄m

2 =sx−xSd /2k̄, which from above can be seen to
grow at a rateRsq̄md=−sxS−xd2/2k̄.

The q̄ dependence of Eq.s7d is similar to theq̄ depen-
dence of the growthsand decayd of fluctuations of Eq.s9d but
with a directional dependence. Importantly, whenqxÞ0,
there are additional positive contributions to the rate which
serve to act against the thermodynamic driving force for
phase separation, hence stabilizing certain fluctuations that
would otherwise grow without bound. The term driving the
stability is the contribution arising from the energy due to the
stress in phase with the strain, coupled to the convection. The
relative magnitude of this term with respect to the other con-
tributions, which serve to promote growth, is maximized
when q̄z=0. The terms arising from interfacial tension will
always increaseA0, even in the presence of shear as would
be expected, and such terms serve to suppress fluctuations at
higherq̄, just as happens in usual phase separation. By anal-
ogy with the Cahn-Hilliard theory we are able to determine a
new critical condition. In the flow directionsq̄y=0,q̄z=0d
this is given by limq̄x→0A0/ q̄x

2=0, from which the condition
for the suppression of the growth of fluctuations becomes,

ḠL

sx − xSd
.

s1 + v̄2ds2 + f1 + 2agg0
2d

2g0
2v̄2 , s10d

wherea=sin2sv̄t̄1d.
The requirement for the growth or suppression of fluctua-

tions is illustrated in Fig. 1 for a variety of values of

ḠL / sxS−xd as a function of shear amplitudeg0 and fre-
quencyv̄. The growth of fluctuations in theq̄x=0 direction
only continues when the amplitude and frequency of the os-
cillation are below certain values. The growth of fluctuations
becomes suppressed forall temporal phasesv̄t̄1 when a=1
in Eq. s10d. For every other intermediate value ofaP f0,1g
the growth would not be always suppressed. For some tem-
poral phases the growth will continue from cycle to cycle,
whereas for others it will remain periodic. Hence, a pair of
g0 and v̄ on the dynamic phase diagramsFig. 1d define a
particular curve in that intermittent region corresponding to a
certain value ofa and, thus,v̄t̄1. Beneath that curveffor
sin2sv̄t̄døsin2sv̄t̄1dg fluctuations will grow, above itffor
sin2sv̄t̄d.sin2sv̄t̄1dg they will be periodic. The dependency
of the behavior on the temporal phase of the applied stress
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arises from the oscillatory nature of the flow, which causes
fluctuations with differentq̄y0 values to come into theq̄y=0
plane at different times. In the limit of large amplitudes,g0
→`, the critical frequency for fluctuations in theq̄x direction
to stay periodically stable forall time phasesv̄t̄1 becomes

v̄c
2 =

3sx − xSd

2ḠL − 3sx − xSd
, s11d

and similarly in the limit of large frequencies,v̄→`, the
critical amplitude is

g0c
2 =

2sx − xSd

ḠL − 3sx − xSd
. s12d

From Fig. 1, it can be seen that the limiting cases are reached
when g0.Os1d and v̄.Os1d. The dependence on the fre-
quency is a consequence of the fact that it is the strain energy
that leads to phase separation, and this increases with fre-
quency up tov̄=vtL<1, after which it remains constant.
The amplitude dependence is a consequence of the magni-
tude of the thermodynamic term, which is coupled to the
flow by convection, becoming dominated by the second term
in Eq. s7d.

Even when the condition of Eq.s10d is not met, the range
of fluctuations that are unstable and growing is modified by
the presence of the shear field. For the time phasev̄t̄1, the
critical wave vector representing the crossover from growth
to decay of fluctuations in the flow direction is given by

q̄xc
2 =

s2 + f1 + 2agg0
2dsx − xSd − 2g0

2v̄2ḠL/s1 + v̄2d
s2 + 2f1 + 2agg0

2 + f2a2 + 6a + 3/4gg0
4dk̄

.

s13d

In Fig. 2 we show an example of the range of wave vectors
that are unstable in both the flow-vorticity and the flow-
gradient planes. This is simply given by the condition that
Eq. s7d is zero, which leads to a quadratic dependence ofq̄x

2

on q̄z
2 or q̄y

2. It can be seen that the temporal phase has a
minimal effect on the stability condition in the flow-vorticity

plane, whereas the effect is more noticeable in the flow-
gradient plane. Illustrations of the contour plots of the under-
lying growth rate,A0, of fluctuations in the flow-vorticity

plane are shown in Fig. 3 forḠL / sx−xSd=10. It is clear that
the fastest growing wave vector occurs whenq̄x=0. The val-
ues ofv̄ andg0 are chosen to represent different regions on
the stability diagramsFig. 1d.

IV. PERIODIC STRUCTURE FACTORS

The corresponding values of the structure factor at wave
vectors for which growth does not occur are illustrated in
Fig. 4. Of particular note is the fact that, for the two in-
stances well within the periodically stable regionfFigs. 4sbd
and 4sddg, the intensity maximum in theq̄x direction occurs
at a wave vector several times greater than the quiescent
critical wave vector. This is further highlighted in Fig. 5
where we show the time dependence during one oscillatory
cycle of the structure factor. The appearance of a maximum
is in agreement with our predictions for the structure factor
in the one-phase region of the phase diagramf16g. For com-
pleteness, we also show the structure factor for theq̄z=0
plane for v̄t̄1=0 in Fig. 6 and forv̄t̄1=p /2 in Fig. 7. It is
worth noting that, in the case ofv̄=1 andg0=1, which is
shown in Figs. 6sbd and 7sbd, the difference between the
maximum intensity throughout the cycle is,10 orders of
magnitude. The changes throughout one cycle are shown in
more detail for one example set of parameters in Fig. 8. The
appearance and location of peaks in theq̄z=0 plane has been
observed experimentally in polymer solutions subjected to
steady shearf4,5g. An explanation for enhancement of fluc-
tuations was given by Milnerf12g, who argued that they

FIG. 1. Dynamic phase diagram showing the regions of sup-
pressed growth in the flow direction in the amplitude-frequency
plane of a polymer solution subjected to an oscillatory shear field.
The lower and upper curves of each pair correspond to the time
phasesv̄t̄1=p /2 andv̄t̄1=0,p, respectively.

FIG. 2. Shear amplitude dependent contours on which the
growth rate of fluctuations is zero in the flow-vorticity plane and the
flow-gradient plane. Within each contour fluctuations grow. The

parameters areḠL=0.01,sx−xSd=0.001,k̄=10−6, and v̄=10.
From the outside contour inwards the amplitude is 0.1, 0.2, 0.3, 0.4,
and 1.0. The upper two graphs correspond to the temporal phase
v̄t̄1=p /4, and the lower two curves to the time phasev̄t̄1=0.
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arise from an imbalance of elastic forces, resulting in con-
centrated polymer regions becoming narrower along theq̄x
= q̄y direction, and broader along theq̄x=−q̄y, when the shear
flow is described byvx= ġy, whereġ is the steady state shear
rate. That is similar to the effect observed in Fig. 8, since
during oscillatory shear the Fourier transformed flow is in

the positiveq̄x direction for half a cycle, and in the negative
q̄x direction for the other half. There is a lag between the
direction of flow and the position of the peaks, which is
simply a consequence of the lag between stress and strain in
a viscoelastic solution. However, the patterns in the flow-
gradient plane would not rotate clockwise from theq̄y= q̄x
line toward the direction of flowq̄x, as observed in steady
shearf4g with the growth of shear rateġ s,g0v̄ in oscilla-
tory sheard because normal stresses are not included in our
current consideration.

The large increase in the structure factor at wave vectors
much greater than the critical value suggest that further un-
derstanding of the interplay between oscillatory shear and
concentration fluctuations would be gained from a study be-
yond the linear analysis presented here. By analogy with the

FIG. 3. Contour plots of the underlying growth rateA0 in the
flow-vorticity planeshorizontal and vertical axes, respectivelyd for
sad v̄=1 andg0=0.1, sbd v̄=1 andg0=1, scd v̄=10 andg0=0.1,

and sdd v̄=10 and g0=1. In each case,ḠL=0.01,sx−xSd
=0.0001,k̄=10−6. The values of the contours from the outside in-
ward areA0=0,−0.002,−0.004,−0.006,−0.008. The white areas
correspond to the wave vectors for which the structure factor does
not grow, but remains periodic. The values of the wave vector have
been divided by the quiescent critical wave vector,q̄c

=Îsx−xSd / k̄. Note the difference in scale of theq̄x axis for scd and
sdd.

FIG. 4. Contour plotsslogarithmic scaled of the structure factor
corresponding exactly to the parameters used for Fig. 3, showing
the intensity whenv̄t̄1=0. The central white areas correspond to the
wave vectors for which growth occurs.

FIG. 5. Time dependence of the structure factor in theq̄x direc-
tion, during a half cycle of the oscillatory shear. The parameters
correspond exactly to those used for Fig. 3.

FIG. 6. sColor onlined Contour plot of the structure factor in the
q̄z=0 plane whenv̄t̄1=0, The parameters correspond exactly to
those used for Fig. 3. The values of the wave vector have been
divided by the quiescent critical wave vectorq̄c=Îsx−xSd / k̄. The
color bar scale is logarithmic, ranging from a minimum value of 10
to a maximum value ofsad 105, sbd 1016, scd 105, sdd 107.
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behavior of large, growing, fluctuations during quiescent
phase separationf24–26g, in some instances the nonlinear
terms may cause the peaks in the structure factor to shift to
smaller values of wave vector, a consequence of the system
attempting to reduce interfacial tension. However, unlike
quiescent phase separation, a periodic steady state must still
be reached, since, as is apparent from Figs. 4–8, at suffi-
ciently small wave vectors the value of the structure factor
decreases to such an extent that the linear theory will become
valid for describing the magnitude of the fluctuations. We
note that descriptions beyond the linear analysis will prob-
ably require numerical simulations of the real-space diffu-
sion equation. The mean-field approximationf25,26g, in
which the probability distribution function for the concentra-
tion fluctuations is assumed to have a Gaussian form, is un-
likely to be tractable when oscillatory shear stresses are in-
cluded in the equation of motion for the structure factor. This
serves to highlight the value of the linear analysis presented
in this paper: it permits quantitative, analytical insight into
the predicted phenomenon.

V. CONCLUSIONS

We have shown that shear stresses alone are sufficient to
suppress phase separation in the flow direction, when oscil-
latory shear is applied to polymer solutions. Significantly,
neither a weak nonlinear flow response due to normal forces
nor a strong nonlinear flow response such as shear thinning
is required, and any solution in which the viscoelastic moduli
increase with the concentration of solute should display simi-
lar behavior. An experimental study probing suppression of
phase separation due to temperature jump by oscillatory

shear flow in polymer solutions would certainly be of great
interest.
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APPENDIX

The prefactors for the periodic contribution to the calcu-
lation of the structure factor, Eq.s6d, are

A1 = − 8q̄y0g0fq̄xsxS− xd + 2q̄0
2q̄xk̄ + q̄xḠLv̄2/s1 + v̄2dg

− 12q̄x
3q̄y0g0

3k̄, sA1d

A2 = 4q̄x
2g0

2ḠLv̄/s1 + v̄2d, sA2d

A3 = 4q̄y0q̄x
3g0

3k̄, sA3d

B1 = − 8q̄y0q̄xg0ḠLv̄/s1 + v̄2d, sA4d

B2 = 2q̄x
2g0

2fsxS− xd + s6q̄y0
2 + 2q̄0

2 − q̄x
2g0

2dk̄

+ 2ḠLv̄2/s1 + v̄2dg, sA5d

B4 =
1

2
q̄x

4g0
4k̄. sA6d

FIG. 8. sColor onlined Contour plot of the structure factor in the
q̄z=0 plane whenv̄t̄1=0 sad, sbd p /4, scd p /2, sdd 3p /4, sed p, sfd
5p /4, sgd 3p /2, shd 7p /4, sid 2p. The parameters correspond ex-
actly to those used for Fig. 3sbd. The values of the wave vector have
been divided by the quiescent critical wave vectorq̄c=Îsx−xSd / k̄.

FIG. 7. sColor onlined Same as Fig. 6, exceptv̄t̄1=p /2. The
color bar scale is logarithmic, ranging from a minimum value of 10
to a maximum value ofsad 105, sbd 1027, scd 105, sdd 107.
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