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Anisotropic suppression of phase separation in polymer solutions by oscillatory shear
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We consider the effects of subjecting a polymer solution to a simultaneous oscillatory shear flow and
temperature jump into the two-phase region of the phase diagram. We predict that if the oscillatory shear
stresses are significant enough then the flow suppresses phase separation in the flow direction, leading to the
possibility of creating strongly aligned structures. We construct a quantitative dynamic phase diagram in the
amplitude-frequency plane showing the conditions for the growth or decay of concentration fluctuations.
Further, we discuss the time dependence of periodic structure factors in the flow-vorticity and flow-gradient
planes. It is also shown that significantly enhanced scattering occurs at large scattering vectors regardless of
whether the unbounded growth of fluctuations at smaller scattering vectors is suppressed.
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[. INTRODUCTION ments and numerical calculations were carried out in differ-
ent planes with respect to the flow direction. We recently
The effects of shear flow on polymeric systems have atdeveloped a theorfj16] to predict the structure factor arising

tracted considerable interest. This is partly due to its relfrom small concentration fluctuations in the presence of an
evance to industrial polymer processing and partly due t@scillatory shear field. This simple model was used to calcu-

such systems providing an ideal test of modern ideas in norlate scattering in the flow-vorticity plane, and we showed
equilibrium statistical mechanics. A quantitative approach tahat it may explain the underlying features observed in Ref.

characterizing the coupling between shear and structure i14]. The model builds upon the approach of Doi and Onuki
volves the study of the response of the concentration fluctud-17], who considered the effects of spatial stress gradients on
tions. Such fluctuations are quantifiable experimentally andhe relaxation dynamics of concentration fluctuations. Such
may be determined theoretically. Concentration fluctuationstress gradients arise naturally when fluctuations in concen-
are measured using scattering techniques, and a rich variefigtion occur, since the stress in a polymer solution is
of behavior has been observed, such as shear-induced mixig§©ongly dependent on the concentration. It was shown, by
and demixing[1-3], and enhanced scattering at finite wave USind _the pr|nC|pIe of force balance, that the stress enters the
vectors[4]. Anisotropic enhancement and/or growth of con- €quation of motion at the same level as the chemical poten-

centration fluctuations in polymer solutions is known to belid- In Ref.[17] it was assumed that the response of indi-
induced by flows such as simple shé&¢11]. vidual polymers to shear flow could be described by a single

relaxation time. The model has been modified to account for
Much of the focus has been on the effects of steady Stat%e rheological response of a binary blend in which each

flows on polymer SOIUtlonS’.W.'th the major theoretlcgl ad'component has distinctly different relaxation tinjfé8-20.
vances, with regards to predicting structure factors being du his approach gives rise to an explicit concentration depen-

to Milne:j[lz] z_nd Helfand j.ncé Fredlric_ksc[r1f3].| R(re]ger?tly, dence of the components of the stress tensor, which has im-
Saito an Has imotfil 4] stu lied a solution of ultrahigh mo- portant consequences even for a system in which the stress
lecular weight polystyrene in dioctyl phthalatBOP) sub- relaxation can be described by one dominant timescale.

jected to oscillatory shear flows using small-angle light scat- In this paper, we extend the theory to consider the effects

tering. They found that for large enough amplitudes of shear,¢ subjecting a polymer solution to a simultaneous oscilla-

the solu_tion displayed features very similar to tha_t of IOhas‘?ory shear flow and temperature jump into the two-phase
separation: “butterfly patterns” in the flow-vorticity plane region of the phase diagram. In Sec. I, we summarize the

werte dobsler;[/_ed.BMl?levanets ﬁnd Yteomim§]_ hzlalve prde-l b.relevant results from our previous paper and present a sim-
sented a latlice-bollzmann scheme o numerically mode Ifaler expression for calculating the structure factor, even

nary systems with a viscosity difference between compOyiihin the one-phase region of the phase diagram. This de-
nents, subjected to oscillatory shear flow. They observed thgy|,,nent leads to a new prediction, which is discussed in
formation of persistent structures in the flow-shear gradlenéec Ill. We show that if the oscillatory shear stresses are

planlg. Thelr observatlon§hofhsuch structures afre cd}fia_rly "gignificant enough then the flow suppresses phase separation
qualitative agreement with the experiments of Rf4]; in the flow direction. We derive an exact condition for the

however, direct comparison is not possible since the eXpe”éuppression of fluctuations and calculate the critical wave

vectors below which fluctuations grow in both the flow-
vorticity and the flow-shear gradient planes. We emphasize
*Electronic address: nigel.clarke@durham.ac.uk that the conditions are determined in terms of independently

1539-3755/2005/18)/0318047)/$23.00 031804-1 ©2005 The American Physical Society



N. CLARKE AND D. MIROSHNYCHENKO PHYSICAL REVIEW E71, 031804(2005

accessible properties of any given polymer solution and the 8@6 ¥ B
control parameters of the applied oscillatory shear field. —= —462(XS—X+K_q2)+_X%)[52 sin(wt)
Thus, the quantitative predictions of this paper are amenable dt lto

to experimental verification. Finally, in Sec. IV, we show
growth rates and periodic structure factors for a range of +wcodwl)] (S+ 27 2)
conditions.
This equation was obtained on the basis of the linear vis-
Il. THEORY

coelastic model for the network stress,
We start by briefly reviewing the important ideas and .
theory covered in more detail in our previous palded]. The oM :f Gt - t’){Ze(t’) _ g[tr )]l }dt’ 3)
strain in oscillatory shear flow is described by(t) o 3 ’
=yesin(wt), so that the velocity profile is
whereG(t) is the stress relaxation function discussed in Ref.

vy = Yo cowt)y, vy=0, v,=0, [16], e is the rate-of-strain tensor whose components are de-
fined in terms of velocity gradients asg;=1/2(Vju;
+Viv;), andl is the identity tensor. No effect of normal
stresses has been considered and, therefore, spatial variations
gf the flow field are not importartl2]. Hence, the dynamics
are only governed by coupling between the fluctuations in

wherex denotes the flow directiory, denotes the shear gra-
dient direction,z denotes the vorticity directiony, is the
maximum amplitude of the flow, and is the frequency. For

a polymer solution, the important thermodynamic parameter
are the difference betweep the Flory-Huggins interaction : :
parameter, angs, its value on the quiescent spinodal, and polymer concentration and in the network stress.

the interfacial energy. The important kinetic parameters are In an oscillatory shear fl(()n\gv, trzs stre_ss tensor 83).has
the collective mobilityM, and a relaxation time; of the ~ ©nly two equal componenis, =o,,, which represent shear
polymer that, in terms of the tube model, is related to theSrésses. In the adiabatic approximation, E8), coupled

Al . (o (DE) with the double reptation model for the stress relaxation
!deal|zed.D0| Edwards relaxation Elmé (ngr) the' pglymer function [21,22, leads[16] to an explicit relation between
in a matrix of fixed obstacles by =(1/2)7 . Within our

. the shear stress and the concentration,
model two further parameters are required, the polymer vol-

ume fractiong, andG,, the plateau modulus of the polymer. G
We assume incompressibility, such that+ ¢s=1, wheregg ggg) = '-—'-27/0[(1,2{ sin wt + w7, coswt], (4)
is the volume fraction of the solvent. l+ow TE
Our starting point i§16] an equation of motion for fluc- ] , ,
tuations in the composition, which allows us to deduce the fluctuations in the stress
straightforwardly. In fact, their contribution can be readily
98 't 98 't identified in Eq.(2).
% =6(q,t) + yow Coiwt)qX% The consequence of the oscillatory convection term in Eq.
Y (2) is that the component of the wave vector in the shear
2 > gradient direction is not constant, and is describedgpy
~M| 20%(xs = x * x0°) =00~ o0y SiN(wl), whereqy is fixed and chosen such that
® g, has some desired value at a given titre;. This expres-
_ ﬂ_%_] S (q,1) (1)  sion is substituted into E42), which may then be solved for
ksT(p.) S Y given go=(0x, Gyo,0,)"; the solution yields the structure fac-

tor for =(0,qy,0,) ", where the value off, depends on the
temporal phaseot;. For example, if it is the shear flow-

% . vorticity plane which is of interest, i.eF,y:O, then the struc-
components of the stress tensor due to the deformation of tr}ﬁre factor at each time betwean, and o, + 27 requires a
polymer network. The effects of thermal fluctuations are reP5olution to Eq. (2) with a éiﬁerentl value of G

. y/

resented by6=6(q,t), which we assume to be Gaussian =760, Sin(wty) ranging from g, 10 Y0,
; P H P icci ; — /0Mx 1 OMx OMx-
white noise and to satisfy the fluctuation-dissipation theo- “ . Eq.(2), which is a first-order nonhomogeneous lin-

rem, ear differential equation, we can write the time dependence
(6(g,0))=0 of the structure factor as

where ¢, (q,1) is the deviation from the volume fraction in
Fourier transform spaceq=(ay,qy,q,)", and crf.”) are the

(B(Q.D Bt = Mt~ ). Sa.t) = So(CIo)eXp{F(%.O)_— F(qo.)}

t
From Eq.(1), we obtained, using the method characteristics, +exp- F(Qo,t)}f 20%(t")exp{F(qg,t)}dt’. (5)
an equation of motion for the structure fact&®(q i) 0

=(|6#.(q,0f), in terms of reduced variablesG.  The exponent of the integrating factor can be written explic-
:GL/kBT, azzsz L t:t/’TL, ;: w7, and?: K/MTL, |t|y as
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. A B .. A _ shear are not able to induce phase separation. On the other
F(do,t) = Aot - %co_{wt} + %S'”{wt} - z—aco_{Zwt} hand, if we now consider what happens inside the quiescent
two-phase region, i.e(xs—x) <0, then we see that the con-
dition A;<0 when a shear is applied does not coincide with
the quiescent condition for phase separation. In the latter
©6) case the nature of the early stages of phase separation, based

on Cahn-Hilliard theory 23], is well established. In the one-
The prefactors of the oscillatory terms in the solution, whichphase region of the phase diagram, fluctuations decay expo-
depend on the conditions ang=(dy, 0y, d,)", are defined in  nentially, ¢, (q,t) < exp{~R(q)t}, with a rate dependent an
the Appendix. The prefactor of the term linear in time is according to
given by,

B A B -
+ —2sin{20t} - —cog3wt} + —cog4wt).
2w 3w 4w

R(@) = 29°(xs— x + k07). 9

Ao(To) :4ag(XS_X+K—q§) + 272053()(5_)() + 4K ygaz(ag Above the critical cqndition defined b_y limoR(g)=0, the
rate becomes negative f(f<(X—X5)/K and such fluctua-

3922 Prde) Va? tions are unstable and grow. There is a fastest growing wave
+2ﬁ§0+ qu)} + t L/0 , (7) vectorafn:()(—xs)/ZZ which from above can be seen to
8 l+o grow at a rateR(q,) =—(xs—x)%/ 2k.

whereqa=02+02,+02. In our previous work we solved Eq. The g dependence of E(7) is similar to theq depen-

(5) numerically with an initial conditiorS,(q), determined ~ dence of the growtkand decayof fluctuations of Eq(9) but

by the behavior of concentration fluctuations in the absenc&ith @ directional dependence. Importantly, wheg#0, -

of shear. Unsurprisingly, we found that the solution becamdhere are additional positive contributions to the rate which
periodic after sufficient cycles. We can gain further insightS€"ve t0 act against the thermodynamic driving force for
into the behavior by noting that if a periodic solution for the phase separation, hence stabilizing certain fluctuations that

structure factor exists then we must have the condition tha@ould otherwise grow without bound. The term driving the

t+27/®)=q 1). Hence, from Eq(5), stability is the contribution arising from the energy dug to the
8@ t+27/©)=5q.0 al®) stress in phase with the strain, coupled to the convection. The

. exp-F(qot+ 27/w)} relative magnitude of this term with respect to the other con-

Sq,t) = 1 - exfl- 27Ay/®) tributions, which serve to promote growth, is maximized

whenq,=0. The terms arising from interfacial tension will
t+2mlo . o always increasd\,, even in the presence of shear as would
x f_ 29°(t")exp{F(qo,t")}dt’". (8)  be expected, and such terms serve to suppress fluctuations at
! higherq, just as happens in usual phase separation. By anal-
Furthermore, the patterns in the flow-vorticity plafgg=0)  ogy with the Cahn-Hilliard theory we are able to determine a
are actually periodic in the temporal phaset because new critical condition. In the flow directiorig,=0,q,=0)
structure factors with the same initial valu€s(q,) have this is given by Iin;;XHOAO/af:O, from which the condition
been convected tq_y:O from ayozyoax sin(wt;) and from for the suppression of the growth of fluctuations becomes,
—0yo= o0 Sin(wt, + 7). Therefore, for that plane the terms — —
with 21/ in Eq. (8) could be substituted simply with/o. G (1+e)@2+[1+2)y)
Note that the initial conditior$,(qy) is, in effect, hidden in (x = xs 2750°
the terms withA,. In addition to being computationally less
gf:s:ré(j)grgjc}g:nc;llzc(lif)(’)fs:)nscc(ialIzlattolfyogrllsé:reciﬁgsg(r:)t/i;ﬁ 'theEq The requirement for the growth or suppression of fluctua-
! . tions is illustrated in Fig. 1 for a variety of values of
(8) leads to an unusual consequence, which we will focus out= ] )
attention on in the following section. Gi/(xs—x) as a function of shear amplitudg, and fre-
quencyw. The growth of fluctuations in thg,=0 direction
only continues when the amplitude and frequency of the os-
Ill. SUPPRESSION OF PHASE SEPARATION cillation are below certain values. The growth of fluctuations
IN THE FLOW DIRECTION becomes suppressed fall temporal phasest, whena=1

Clearly a physically meaningful solution to E®), i.e., a in Eq. (10). For every other intermediate value @& [0, 1]
positive periodic structure factor, can only exist if the de-the growth would not be always suppressed. For some tem-
nominator is positive, or equivalently, #,>0. From Eq. Poral phases the growth will continue from cycle to cycle,
(7), it can be seen that this will always be the case in the oné&/hereas for others it will remain periodic. Hence, a pair of
phase region, i.e., whefys—x)>0. If A;<O then the as- Yo and w on the dynamic phase diagraffig. 1) define a
sumption that a periodic solution exists must be incorrectParticular curve in that intermittent region corresponding to a
which corresponds to the only other physically meaningfulcertain value ofa and, thus,wt;. Beneath that curvéfor
possibility that the structure factor grows without bound.Sin*(t) <sir’(wty)] fluctuations will grow, above iffor
This situation simply corresponds to the early stages of phasgin?(wt) > sir’(wt;)] they will be periodic. The dependency
separation. Hence, as expected shear stresses in oscillatafythe behavior on the temporal phase of the applied stress

(10

wherea=sirf(wt,).
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FIG. 1. Dynamic phase diagram showing the regions of sup-
pressed growth in the flow direction in the amplitude-frequency
plane of a polymer solution subjected to an oscillatory shear field.
The lower and upper curves of each pair correspond to the time
phaseswt; = 7/2 andwt,;=0,, respectively.

40 405 00 05 10 40 05 00 05 10
qjq, q/q,

) ] ) FIG. 2. Shear amplitude dependent contours on which the
arises from the oscillatory nature of the flow, which causesyrowth rate of fluctuations is zero in the flow-vorticity plane and the
fluctuations with differentyy, values to come into thg,=0  flow-gradient plane. Within each contour fluctuations grow. The
plane at different times. In the limit of large amplitudes,  parameters areG,=0.01,(y-x9=0.001,x=10¢, and @=10.

— o0, the critical frequency for fluctuations in tlog direction  From the outside contour inwards the amplitude is 0.1, 0.2, 0.3, 0.4,
to stay periodically stable faall time phasesot; becomes  and 1.0. The upper two graphs correspond to the temporal phase
L, 3(x-x9 wt;=m/4, and the lower two curves to the time phasig=0.
weE———— (11

2G. - 3(x~ x9 plane, whereas the effect is more noticeable in the flow-
gradient plane. lllustrations of the contour plots of the under-
lying growth rate,A,, of fluctuations in the flow-vorticity

plane are shown in Fig. 3 fdB, / (y— x5 =10. It is clear that
_ 2(x = x9 (12) the fastest growing wave vector occurs wiigr 0. The val-
o EL -3(x-x9 ' ues ofw and y, are chosen to represent different regions on
the stability diagran(Fig. 1).
From Fig. 1, it can be seen that the limiting cases are reached
when y,>0(1) and w>0O(1). The dependence on the fre-
quency is a consequence of the fact that it is the strain energy
that leads to phase separation, and this increases with fre- The corresponding values of the structure factor at wave
quency up tow=wn ~1, after which it remains constant. yectors for which growth does not occur are illustrated in
The amplitude dependence is a consequence of the magrtiig. 4. Of particular note is the fact that, for the two in-
tude of the the_rmodynaml_c term,_wh|ch is coupled to thestances well within the periodically stable regidfigs. 4b)
flow by convection, becoming dominated by the second ternyq 4d)], the intensity maximum in the, direction occurs
in Eq. (7). -~ ] at a wave vector several times greater than the quiescent
Even when the condition of E410) is not met, the range  critical wave vector. This is further highlighted in Fig. 5
of fluctuations that are unstable and growing is modified byyhere we show the time dependence during one oscillatory
the presence of the shear field. For the time phatsethe  cycle of the structure factor. The appearance of a maximum
critical wave vector representing the crossover from growths in agreement with our predictions for the structure factor
to decay of fluctuations in the flow direction is given by in the One-phase region of the phase d|ag[aﬁ] For com-
— pleteness, we also show the structure factor for qire0
o _(2+[1+ 22]7) (X = X9 = 2%0’G/(1 +w?) plane forwt,=0 in Fig. 6 and forwt;==/2 in Fig. 7. It is
2+ 21+2a]y;+[2a%+6a+ 34Kk worth noting that, in the case @=1 andy,=1, which is
(13) shown in Figs. @) and 71b), the difference between the
maximum intensity throughout the cycle is10 orders of
In Fig. 2 we show an example of the range of wave vectorsnagnitude. The changes throughout one cycle are shown in
that are unstable in both the flow-vorticity and the flow- more detail for one example set of parameters in Fig. 8. The
gradient planes. This is simply given by the condition thatappearance and location of peaks in¢he0 plane has been
Eq. (7) is zero, which leads to a quadratic dependenc&fof observed experimentally in polymer solutions subjected to
on g2 or a; It can be seen that the temporal phase has ateady sheaf4,5]. An explanation for enhancement of fluc-
minimal effect on the stability condition in the flow-vorticity tuations was given by Milnef12], who argued that they

and similarly in the limit of large frequenciegy— o, the
critical amplitude is

IV. PERIODIC STRUCTURE FACTORS
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005~ 000 ~ 005 010 FIG. 5. Time dependence of the structure factor indheirec-
tion, during a half cycle of the oscillatory shear. The parameters
correspond exactly to those used for Fig. 3.

FIG. 3. Contour plots of the underlying growth ratg in the

flow-vorticity plane (horizontal and vertical axes, respectivefgr  the positiveq, direction for half a cycle, and in the negative
(@ w=1 andy=0.1, (b) ©=1 andy=1, (c) =10 andy%=0.1, g direction for the other half. There is a lag between the
and (d) w=10 and y=1. In each caseG =0.01,(x-xs)  direction of flow and the position of the peaks, which is
=0.0001,K=10_6. The values of the contours from the outside in- s|mp|y a consequence of the |ag between stress and strain in
ward areAy=0,-0.002,-0.004,-0.006,-0.008. The white areasy yjscoelastic solution. However, the patterns in the flow-
correspond to the wave v_ect_ors for which the structure factor doe@radient plane would not rotate clockwise from @3:@
EOtgrO‘('j": p;t(;en;amstr?enodl_c. Thet"a'“?t_s OT the wave Ve‘ito_r hav§ne toward the direction of flove,, as observed in steady
een dvided by the quiescent critical wave VeClde  ghaarf4] with the growth of shear ratg (~y,w in oscilla-
=V(x~xg)/ x. Note the difference in scale of thg axis for(c) and 4y, sheay becausge normal stresses zre nyc())t included in our
@. current consideration.
arise from an imbalance of elastic forces, resulting in con- The large increase in t_h_e structure factor at wave vectors
centrated polymer regions becoming narrower alongcghe much grgater than t.he critical value sugggst that further un-
=g, direction, and broader along tigg=-q,, when the shear derstandln_g of the m_terplay between _oscnlatory shear and
flogv is described by, = yy, wherey is the ysteady state shear concentration quctuatlpns would be gained from a study be-
rate. That is similar to the effect observed in Fig. 8, sinceyond the linear analysis presented here. By analogy with the

during oscillatory shear the Fourier transformed flow is in

4 a
3
2 0
14/,
o
A1 4
2
s 4 0 4
4 4 [
2
- 0
34
-2
4
4 2 0 2 4
3/,

FIG. 6. (Color online Contour plot of the structure factor in the
q,=0 plane whenwt,;=0, The parameters correspond exactly to
FIG. 4. Contour plotglogarithmic scalgof the structure factor those used for Fig. 3. The values of the wave vector have been
corresponding exactly to the parameters used for Fig. 3, showindivided by the quiescent critical wave vecty=+/(x—xs)/«. The
the intensity wherwt; =0. The central white areas correspond to thecolor bar scale is logarithmic, ranging from a minimum value of 10
wave vectors for which growth occurs. to a maximum value ofa) 10°, (b) 106, (c) 10°, (d) 10"
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FIG. 7. (Color online@ Same as Fig. 6, excepit;==/2. The FIG. 8. (Color onling Contour plot of the structure factor in the
color bar scale is logarithmic, ranging from a minimum value of 109;=0 plane wherwt; =0 (a), (b) /4, (c) m/2, (d) 3m/4, (e) , (f)
to a maximum value ofa) 1C°, (b) 10?7, (c) 10°, (d) 10'. 5u/4, (g9) 3w/2, (h) 7w/4, (i) 2. The parameters correspond ex-

actly to those used for Fig(B). The values of the wave vector have

behavior of large, growing, fluctuations during qwescentbeen divided by the quiescent critical wave veaigr \(x~xs)/ «-

phase separatiof24—26, in some instances the nonlinear

terms may cause the peaks in the structure factor to shift tghear flow in polymer solutions would certainly be of great
smaller values of wave vector, a consequence of the systetfiterest.
attempting to reduce interfacial tension. However, unlike
quiescent phase separation, a periodic steady state must still

be reached, since, as is apparent from Figs. 4-8, at suffi- The authors would like to acknowledge the support of the
ciently small wave vectors the value of the structure factoEPSRC through Grant No. GR/N36509/01, and D.M. would
decreases to such an extent that the linear theory will beconedso like to thank the EPSRC for further support through
valid for describing the magnitude of the fluctuations. WeGrant No. GR/R90017/01.

note that descriptions beyond the linear analysis will prob-

ably require numerical simulations of the real-space diffu- APPENDIX

sion equation. The mean-field approximati¢p5,26, in The prefactors for the periodic contribution to the calcu-
which the probability distribution function for the concentra- |ation of the structure factor, E6), are

tion fluctuations is assumed to have a Gaussian form, is un- -

likely to be tractable when oscillatory shear stresses are in- A; = - 8qyoyo[Ge(xs— x) + 2000k + 0 GLw (1 + )]

cluded in the equation of motion for the structure factor. This

ACKNOWLEDGMENTS

53~ A3

serves to highlight the value of the linear analysis presented ~ 120,0y070k, (A1)
in this paper: it permits quantitative, analytical insight into o
the predicted phenomenon. A, = 402G 0l (1 + @?), (A2)

V. CONCLUSIONS Ag = 40,005 Yor, (A3)

We have shown that shear stresses alone are sufficient to . —_ -

suppress phase separation in the flow direction, when oscil- By = — 80y 0GLw/ (1 + ), (A4)
latory shear is applied to polymer solutions. Significantly, _ s s o
neither a weak nonlinear flow response due to normal forces B, = 2053l (xs— X) + (6050 + 205~ 0z ) k

nor a strong nonlinear flow response such as shear thinning
is required, and any solution in which the viscoelastic moduli
increase with the concentration of solute should display simi-
lar behavior. An experimental study probing suppression of _la

- - - B4 = S0 vox- (AB)
phase separation due to temperature jump by oscillatory 2

+2G, 0?(1 + o?)], (A5)
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